AA=28 gl Jluas = W o305 0Lzl o3 = 0Ll cxas g e olKsl
\ u‘:‘f O (u,:SY)L;ugM wols o)Lo..i': :;_»l,;l_—s rgL', 9 rgL',

b)Lo..:ag[blS Jaw@z@@/,'c)l:éueulg .Mj@goﬁaﬁ)ﬁ;).)&ﬂ)b |)LJ|9M)Q
Al (a5 ol g a9 gy oY Slael b Gl pemiols o, el .M,;*,Lufﬂfusé,, |, s9ziols
.CAwloLA).QJl Y.

ol o s lgudy L

A8 50 A, 5 Gl s 5 4] @l les S e [TF]
0]
fi(n) =n%990gn fo(n) =1000000n f3(n) = 1.0000001n fi(n) = n?

fi(n) < fs(n) < fa(n) < fa(n)
To see why fi(n) grows asymptotically slower than fs(n), recall that for any ¢ > 0, logn is O(n).
Therefore we have:

fl (’I”L) _ n0.99999 logn — O(n0.99999.n0.000001) _ O(n) _ O(fQ(n))

The function fa(n) is linear, while the function f4(n) is quadratic, so fa(n) is O(fs(n)). Finally, we
know that f3(n) is also linear, which grows slower than quadratic and f3(n), so f3(n) is also O(f4(n)).

(«)

21000000

fi(n) =2 faln) = 21990000 fi(n) = (Z) falm) = n/n

fi(n) < fa(n) < f3(n) < fa(n)
The variable n never appears in the formula for fi(n), so despite the multiple exponentials, fi(n) is
constant. Hence, it is asymptotically smaller than fs(n), which does grow with n. We may rewrite the
formula for f4(n) to be fi(n) = ny/n = n® . The value of f3(n) is given by the formula n(n —1)/2,
which is ©(n?). Hence, fi(n) = n'® = O(n?) = O(f3(n)). Finally, fo(n) is exponential, while f3(n) is
quadratic, meaning that f3(n) is O(f2(n)).

fi(n) =nV" fa(n) =2" fa(n) =n'0.23 fa(n) = Z(i +1)

fa(n) < fi(n) < f3(n) < fa(n)
To see why, we first use the rules of arithmetic series to derive a simpler formula for fy(n):
" n((n+1)+2) n(n+3)

falm) = 31 +1) = TETDTE S RS — o(n?)

This is clearly asymptotically smaller than fi(n) = nV™. Next, we want to compare fi(n), f2(n), and
f3(n). To do so, we transform both f;(n) and f3(n) so that they look more like f3(n):

fi(n) = nV? = (2losm)V" = gV logn
fS(TL) — n10.2% _ 210gn10.2% _ 2%+1Ologn

The exponent of the 2 in fi(n) is a function that grows more slowly than linear time; the exponent
of the 2 in f3(n) is a function that grows linearly with n. Therefore, f1(n) = O(f5(n)). Finally, we
wish to compare f5(n) with fy(n). Both have a linear function of n in their exponent, so it’s tempting
to say that they behave the same asymptotically, but they do not. If ¢ is any constant and g(x) is a
function, then 2°9(*) = (26)9(””). Hence, changing the constant of the function in the exponent is the
same as changing the base of the exponent, which does affect the asymptotic running time. Hence,

f3(n) is O(f2(n)), but fa(n) is not O(f3(n)).

T’)'l\ A0

AA=28 gl Jluas = W o305 0Lzl o3 = 0Ll cxas g e olKsl

g T(n,n) Sl | 5 gaS5k bely, 5160 Slawlon (Samey [V9] Y
T(x,c) =0O(x) forc<2,

T(c,y) =O(y) fore<2,and

T(z,y) = Oz +y) +T(2/2,y/2)

The correct answer is O(n). To see why, we rewrite the recurrence relation to avoid © notation
as follows:

T(z,y) = c(z +y) + T(x/2,y/2)
We may then begin to replace T(x/2, y/2) with the recursive formula containing it:

x+vy
2

T +y

)+ o) + oI

8

This geometric sequence is bounded from above by 2¢(x + y), and is obviously bounded from
below by ¢(x + y). Therefore, T'(z,y) is O(z + y), and so T'(n,n) is O(n).

(b)

T(z,y) = c(z +y) + ¢()+ ...

T(x,c) =0O(x) forc<2,
T(c,y) =0O(y) forec<2,and
T(z,y) = O(x) + T(z,y/2)
The correct answer is ©(nlogn). To see why, we rewrite the recurrence relation to avoid ©

notation as follows: T'(z,y) = cx + T(x,y/2). We may then begin to replace T'(z,y/2) with
the recursive formula containing it: T'(z,y) = cx + cx +cx+---+ cx . As a result, T(z,y) is

O(log y)times
O(zlogy). When we substitute n for z and y, we get that T(n,n) is ©(nlogn).

(¢)

T(x,c) =0O(x) for c<2,
T(z,y) = ©(x) + 5(x,y/2),
S(c,y) =0O(y) fore<2,
S(z,y) = O(y) +T(x/2,y)

The correct answer here is ©(n). To see why, we want to first eliminate the mutually recursive
recurrence relations. To do so, we will replace all references to the function S(z,y) with the
definition of S(z,y). This yields the following recurrence relation for T'(x,y):

T(x,y) = O(z) +O(y/2) + T(z/2,y/2)

We can rewrite this to eliminate the constants and get the recurrence T'(z,y) = O(x + y) +
T(x/2,y/2). This is precisely the same recurrence relation as seen in part (a) of this problem,
so it must have the same complexity.

D,k 0 55 ez abi)3 1) 595 Juds S Gasiine (X)L (V) cedle L) Ly Ol ke g pob b s [Y4] WY
(a) _X_ A ©O(n?) algorithm always takes longer to run than a ©(logn) algorithm.

False. The constant of the ©(logn) algorithm could be a lot higher than the constant of the
©(n?) algorithm, so for small n, the ©(logn) algorithm could take longer to run.

VI axio

AA=28 gl Jluas = W o305 0Lzl o3 = 0Ll cxas g e olKsl
\ u‘:‘f O (u,:SY)L;ugM wols o)Lo..i': :;_»l,;l_—s rgL', 9 rgL',

(b) / 1If f(n) = ©(g(n)) and g(n) = O(h(n)), then h(n) = O(f(n)).
True. © is transitive
(¢) L 1f f(n) = O(g(n)) and g(n) = O(h(n)), then h(n) = Q(f(n))
n) = Q(f(n)) is the same as f(n) = O(h(n)).
(d) X If f(n) = O(g(n)) and g(n) = O(f(n)) then f(n) = g(n).
False: f(n) =n and g(n) =n + 1.

True. O is transitive, and h

9(nlogn) s:u) ;%bwgi)ﬂl NI PR WY K Lo.J;d\.: x@’“‘°*‘°9(§*’“‘f‘w nb AQI)T [YJ] ¥
(MXL&«A U|/J|)‘a.~c9.>))f.>t.g.>)|.>.>9.>91&wLQI)TU.J)J)‘M}) QTMMAY.&:\J@bb

We first sort the elements in the array using a sorting algorithm such as merge-sort which runs in time
©(nlogn). Then, we can find if two elements exist in A whose sum is z as follows. For each element A[i]
in A, set y = A[i]—z. Using binary search, find if the element y exists in A. If so, return A[i] and y. If we
can’t find y for any A[é], then return that no such pair of elements exists. Each binary search takes time
©(log n), and there are n of them. So, the total time for this procedure is T'(n) = ©(nlogn)+©O(nlogn)
where the first term comes from sorting and the second term comes from performing binary search for
each of the n elements. Therefore, the total running time is T'(n) = O(nlogn). An alternate procedure
to find the two elements in the sorted array is given below:

SUM-TO-X(A)

Merge-Sort(A)

141

j « length(A)

while i < j do

if Afi]+ A[j] equals z then
| return A[i], A[j]

end

if Ali]+ A[j] < « then
| i i+1

end

if Ali]+ A[j] > « then
| j<J5-1

end

end

We set counters at the two ends of the array. If their sum is x, we return those values. If the sum is
less than z, we need a bigger sum so we increment the bottom counter. If the sum is greater than z, we
decrement the top counter. The loop does ©(n) iterations, since at each iteration we either increment
1 or decrement j so ji¢ is always decreasing and we terminate when j¢ < 0. However, this still runs in
time ©(nlogn) since the running time is dominated by sorting.

V5l axio

