
Programming Assignment 4:
Binary Search Trees

Revision: September 14, 2019

Introduction
In this programming assignment, you will practice implementing binary search trees including balanced ones
and using them to solve algorithmic problems. In some cases you will just implement an algorithm from the
lectures, while in others you will need to invent an algorithm to solve the given problem using hashing.

Learning Outcomes
Upon completing this programming assignment you will be able to:

1. Apply binary search trees to solve the given algorithmic problems.

2. Implement in-order, pre-order and post-order traversal of a binary tree.

3. Implement a data structure to compute range sums.

4. Implement a data structure that can store strings and quickly cut parts and patch them back.

Passing Criteria: 3 out of 5
Passing this programming assignment requires passing at least 3 out of 5 programming challenges from this
assignment. In turn, passing a programming challenge requires implementing a solution that passes all the
tests for this problem in the grader and does so under the time and memory limits specified in the problem
statement.

Contents
1 Binary tree traversals 2

2 Is it a binary search tree? 5

3 Is it a binary search tree? Hard version. 9

4 Set with range sums 14

5 Rope 18

6 Appendix 19
6.1 Compiler Flags . 19
6.2 Frequently Asked Questions . 20

1

1 Binary tree traversals

Problem Introduction
In this problem you will implement in-order, pre-order and post-order traversals of a binary tree. These
traversals were defined in the week 1 lecture on tree traversals, but it is very useful to practice implementing
them to understand binary search trees better.

Problem Description
Task. You are given a rooted binary tree. Build and output its in-order, pre-order and post-order traversals.

Input Format. The first line contains the number of vertices 𝑛. The vertices of the tree are numbered
from 0 to 𝑛− 1. Vertex 0 is the root.

The next 𝑛 lines contain information about vertices 0, 1, ..., 𝑛−1 in order. Each of these lines contains
three integers 𝑘𝑒𝑦𝑖, 𝑙𝑒𝑓𝑡𝑖 and 𝑟𝑖𝑔ℎ𝑡𝑖 — 𝑘𝑒𝑦𝑖 is the key of the 𝑖-th vertex, 𝑙𝑒𝑓𝑡𝑖 is the index of the left
child of the 𝑖-th vertex, and 𝑟𝑖𝑔ℎ𝑡𝑖 is the index of the right child of the 𝑖-th vertex. If 𝑖 doesn’t have
left or right child (or both), the corresponding 𝑙𝑒𝑓𝑡𝑖 or 𝑟𝑖𝑔ℎ𝑡𝑖 (or both) will be equal to −1.

Constraints. 1 ≤ 𝑛 ≤ 105; 0 ≤ 𝑘𝑒𝑦𝑖 ≤ 109; −1 ≤ 𝑙𝑒𝑓𝑡𝑖, 𝑟𝑖𝑔ℎ𝑡𝑖 ≤ 𝑛 − 1. It is guaranteed that the input
represents a valid binary tree. In particular, if 𝑙𝑒𝑓𝑡𝑖 ̸= −1 and 𝑟𝑖𝑔ℎ𝑡𝑖 ̸= −1, then 𝑙𝑒𝑓𝑡𝑖 ̸= 𝑟𝑖𝑔ℎ𝑡𝑖. Also,
a vertex cannot be a child of two different vertices. Also, each vertex is a descendant of the root vertex.

Output Format. Print three lines. The first line should contain the keys of the vertices in the in-order
traversal of the tree. The second line should contain the keys of the vertices in the pre-order traversal
of the tree. The third line should contain the keys of the vertices in the post-order traversal of the tree.

Time Limits.

language C C++ Java Python C# Haskell JavaScript Ruby Scala

time (sec) 1 1 12 6 1.5 2 6 6 12

Memory Limit. 512MB.

Sample 1.
Input:
5
4 1 2
2 3 4
5 -1 -1
1 -1 -1
3 -1 -1
Output:
1 2 3 4 5
4 2 1 3 5
1 3 2 5 4

2

https://www.coursera.org/learn/data-structures/lecture/fr51b/tree-traversal

4

2

1 3

5

Sample 2.
Input:
10
0 7 2
10 -1 -1
20 -1 6
30 8 9
40 3 -1
50 -1 -1
60 1 -1
70 5 4
80 -1 -1
90 -1 -1
Output:
50 70 80 30 90 40 0 20 10 60
0 70 50 40 30 80 90 20 60 10
50 80 90 30 40 70 10 60 20 0

0

70

50 40

30

80 90

20

60

10

Starter Files
There are starter solutions only for C++, Java and Python3, and if you use other languages, you need to
implement solution from scratch. Starter solutions read the input, define the methods to compute different
traversals of the binary tree and write the output. You need to implement the traversal methods.

What to Do
Implement the traversal algorithms from the lectures. Note that the tree can be very deep in this problem,
so you should be careful to avoid stack overflow problems if you’re using recursion, and definitely test your
solution on a tree with the maximum possible height.

3

Need Help?
Ask a question or see the questions asked by other learners at this forum thread.

4

https://www.coursera.org/learn/data-structures/discussions/weeks/4/threads/3EBUbPoCEeWEAhLOZ9BW_w

2 Is it a binary search tree?

Problem Introduction
In this problem you are going to test whether a binary search tree data structure from some programming
language library was implemented correctly. There is already a program that plays with this data structure
by inserting, removing, searching integers in the data structure and outputs the state of the internal binary
tree after each operation. Now you need to test whether the given binary tree is indeed a correct binary
search tree. In other words, you want to ensure that you can search for integers in this binary tree using
binary search through the tree, and you will always get correct result: if the integer is in the tree, you will
find it, otherwise you will not.

Problem Description
Task. You are given a binary tree with integers as its keys. You need to test whether it is a correct binary

search tree. The definition of the binary search tree is the following: for any node of the tree, if its
key is 𝑥, then for any node in its left subtree its key must be strictly less than 𝑥, and for any node in
its right subtree its key must be strictly greater than 𝑥. In other words, smaller elements are to the
left, and bigger elements are to the right. You need to check whether the given binary tree structure
satisfies this condition. You are guaranteed that the input contains a valid binary tree. That is, it is a
tree, and each node has at most two children.

Input Format. The first line contains the number of vertices 𝑛. The vertices of the tree are numbered
from 0 to 𝑛− 1. Vertex 0 is the root.

The next 𝑛 lines contain information about vertices 0, 1, ..., 𝑛−1 in order. Each of these lines contains
three integers 𝑘𝑒𝑦𝑖, 𝑙𝑒𝑓𝑡𝑖 and 𝑟𝑖𝑔ℎ𝑡𝑖 — 𝑘𝑒𝑦𝑖 is the key of the 𝑖-th vertex, 𝑙𝑒𝑓𝑡𝑖 is the index of the left
child of the 𝑖-th vertex, and 𝑟𝑖𝑔ℎ𝑡𝑖 is the index of the right child of the 𝑖-th vertex. If 𝑖 doesn’t have
left or right child (or both), the corresponding 𝑙𝑒𝑓𝑡𝑖 or 𝑟𝑖𝑔ℎ𝑡𝑖 (or both) will be equal to −1.

Constraints. 0 ≤ 𝑛 ≤ 105; −231 < 𝑘𝑒𝑦𝑖 < 231 − 1; −1 ≤ 𝑙𝑒𝑓𝑡𝑖, 𝑟𝑖𝑔ℎ𝑡𝑖 ≤ 𝑛 − 1. It is guaranteed that the
input represents a valid binary tree. In particular, if 𝑙𝑒𝑓𝑡𝑖 ̸= −1 and 𝑟𝑖𝑔ℎ𝑡𝑖 ̸= −1, then 𝑙𝑒𝑓𝑡𝑖 ̸= 𝑟𝑖𝑔ℎ𝑡𝑖.
Also, a vertex cannot be a child of two different vertices. Also, each vertex is a descendant of the root
vertex. All keys in the input will be different.

Output Format. If the given binary tree is a correct binary search tree (see the definition in the problem
description), output one word “CORRECT” (without quotes). Otherwise, output one word “INCOR-
RECT” (without quotes).

Time Limits.

language C C++ Java Python C# Haskell JavaScript Ruby Scala

time (sec) 2 2 3 10 3 4 10 10 6

Memory Limit. 512MB.

5

Sample 1.
Input:
3
2 1 2
1 -1 -1
3 -1 -1
Output:
CORRECT

2

1 3

Left child of the root has key 1, right child of the root has key 3, root has key 2, so everything to the
left is smaller, everything to the right is bigger.

Sample 2.
Input:
3
1 1 2
2 -1 -1
3 -1 -1
Output:
INCORRECT

1

2 3

The left child of the root must have smaller key than the root.

Sample 3.
Input:
0
Output:
CORRECT

Empty tree is considered correct.

6

Sample 4.
Input:
5
1 -1 1
2 -1 2
3 -1 3
4 -1 4
5 -1 -1
Output:
CORRECT

Explanation:

1

2

3

4

5

The tree doesn’t have to be balanced. We only need to test whether it is a correct binary search tree,
which the tree in this example is.

Sample 5.
Input:
7
4 1 2
2 3 4
6 5 6
1 -1 -1
3 -1 -1
5 -1 -1
7 -1 -1
Output:
CORRECT

Explanation:

4

2

1 3

6

5 7

7

This is a full binary tree, and the property of the binary search tree is satisfied in every node.

Sample 6.
Input:
4
4 1 -1
2 2 3
1 -1 -1
5 -1 -1
Output:
INCORRECT

Explanation:

4

2

1 5

Node 5 is in the left subtree of the root, but it is bigger than the key 4 in the root.

Starter Files
The starter solutions for this problem read the input data from the standard input, pass it to a blank
procedure, and then write the result to the standard output. You are supposed to implement your algorithm
in this blank procedure if you are using C++, Java, or Python3. For other programming languages, you need
to implement a solution from scratch. Filename: is_bst

What to Do
Testing the binary search tree condition for each node and every other node in its subtree will be too slow.
You should come up with a faster algorithm.

Need Help?
Ask a question or see the questions asked by other learners at this forum thread.

8

https://www.coursera.org/learn/data-structures/discussions/weeks/6/threads/QyTVc_BhEeamuwo9wEiniA

3 Is it a binary search tree? Hard version.

Problem Introduction
In this problem you are going to solve the same problem as the previous one, but for a more general case,
when binary search tree may contain equal keys.

Problem Description
Task. You are given a binary tree with integers as its keys. You need to test whether it is a correct binary

search tree. Note that there can be duplicate integers in the tree, and this is allowed. The definition of
the binary search tree in such case is the following: for any node of the tree, if its key is 𝑥, then for any
node in its left subtree its key must be strictly less than 𝑥, and for any node in its right subtree its key
must be greater than or equal to 𝑥. In other words, smaller elements are to the left, bigger elements
are to the right, and duplicates are always to the right. You need to check whether the given binary
tree structure satisfies this condition. You are guaranteed that the input contains a valid binary tree.
That is, it is a tree, and each node has at most two children.

Input Format. The first line contains the number of vertices 𝑛. The vertices of the tree are numbered
from 0 to 𝑛− 1. Vertex 0 is the root.

The next 𝑛 lines contain information about vertices 0, 1, ..., 𝑛−1 in order. Each of these lines contains
three integers 𝑘𝑒𝑦𝑖, 𝑙𝑒𝑓𝑡𝑖 and 𝑟𝑖𝑔ℎ𝑡𝑖 — 𝑘𝑒𝑦𝑖 is the key of the 𝑖-th vertex, 𝑙𝑒𝑓𝑡𝑖 is the index of the left
child of the 𝑖-th vertex, and 𝑟𝑖𝑔ℎ𝑡𝑖 is the index of the right child of the 𝑖-th vertex. If 𝑖 doesn’t have
left or right child (or both), the corresponding 𝑙𝑒𝑓𝑡𝑖 or 𝑟𝑖𝑔ℎ𝑡𝑖 (or both) will be equal to −1.

Constraints. 0 ≤ 𝑛 ≤ 105; −231 ≤ 𝑘𝑒𝑦𝑖 ≤ 231 − 1; −1 ≤ 𝑙𝑒𝑓𝑡𝑖, 𝑟𝑖𝑔ℎ𝑡𝑖 ≤ 𝑛 − 1. It is guaranteed that the
input represents a valid binary tree. In particular, if 𝑙𝑒𝑓𝑡𝑖 ̸= −1 and 𝑟𝑖𝑔ℎ𝑡𝑖 ̸= −1, then 𝑙𝑒𝑓𝑡𝑖 ̸= 𝑟𝑖𝑔ℎ𝑡𝑖.
Also, a vertex cannot be a child of two different vertices. Also, each vertex is a descendant of the root
vertex. Note that the minimum and the maximum possible values of the 32-bit integer type are allowed
to be keys in the tree — beware of integer overflow!

Output Format. If the given binary tree is a correct binary search tree (see the definition in the problem
description), output one word “CORRECT” (without quotes). Otherwise, output one word “INCOR-
RECT” (without quotes).

Time Limits.

language C C++ Java Python C# Haskell JavaScript Ruby Scala

time (sec) 2 2 3 10 3 4 10 10 6

Memory Limit. 512MB.

9

Sample 1.
Input:
3
2 1 2
1 -1 -1
3 -1 -1
Output:
CORRECT

2

1 3

Left child of the root has key 1, right child of the root has key 3, root has key 2, so everything to the
left is smaller, everything to the right is bigger.

Sample 2.
Input:
3
1 1 2
2 -1 -1
3 -1 -1
Output:
INCORRECT

1

2 3

The left child of the root must have smaller key than the root.

10

Sample 3.
Input:
3
2 1 2
1 -1 -1
2 -1 -1
Output:
CORRECT

2

1 2

Duplicate keys are allowed, and they should always be in the right subtree of the first duplicated
element.

Sample 4.
Input:
3
2 1 2
2 -1 -1
3 -1 -1
Output:
INCORRECT

2

2 3

The key of the left child of the root must be strictly smaller than the key of the root.

Sample 5.
Input:
0
Output:
CORRECT

Empty tree is considered correct.

11

Sample 6.
Input:
1
2147483647 -1 -1
Output:
CORRECT

Explanation:

2147483647

The maximum possible value of the 32-bit integer type is allowed as key in the tree.

Sample 7.
Input:
5
1 -1 1
2 -1 2
3 -1 3
4 -1 4
5 -1 -1
Output:
CORRECT

Explanation:

1

2

3

4

5

The tree doesn’t have to be balanced. We only need to test whether it is a correct binary search tree,
which the tree in this example is.

12

Sample 8.
Input:
7
4 1 2
2 3 4
6 5 6
1 -1 -1
3 -1 -1
5 -1 -1
7 -1 -1
Output:
CORRECT

Explanation:

4

2

1 3

6

5 7

This is a full binary tree, and the property of the binary search tree is satisfied in every node.

Starter Files
The starter solutions for this problem read the input data from the standard input, pass it to a blank
procedure, and then write the result to the standard output. You are supposed to implement your algorithm
in this blank procedure if you are using C++, Java, or Python3. For other programming languages, you need
to implement a solution from scratch. Filename: is_bst_hard

What to Do
Try to adapt the algorithm from the previous problem to the case when duplicate keys are allowed, and
beware of integer overflow!

Need Help?
Ask a question or see the questions asked by other learners at this forum thread.

13

https://www.coursera.org/learn/data-structures/discussions/weeks/6/threads/QyTVc_BhEeamuwo9wEiniA

4 Set with range sums

Problem Introduction
In this problem, your goal is to implement a data structure to store a set of integers and quickly compute
range sums.

Problem Description
Task. Implement a data structure that stores a set 𝑆 of integers with the following allowed operations:

∙ add(𝑖) — add integer 𝑖 into the set 𝑆 (if it was there already, the set doesn’t change).

∙ del(𝑖) — remove integer 𝑖 from the set 𝑆 (if there was no such element, nothing happens).

∙ find(𝑖) — check whether 𝑖 is in the set 𝑆 or not.

∙ sum(𝑙, 𝑟) — output the sum of all elements 𝑣 in 𝑆 such that 𝑙 ≤ 𝑣 ≤ 𝑟.

Input Format. Initially the set 𝑆 is empty. The first line contains 𝑛 — the number of operations. The next
𝑛 lines contain operations. Each operation is one of the following:

∙ “+ i" — which means add some integer (not 𝑖, see below) to 𝑆,

∙ “- i" — which means del some integer (not 𝑖, see below)from 𝑆,

∙ “? i" — which means find some integer (not 𝑖, see below)in 𝑆,

∙ “s l r" — which means compute the sum of all elements of 𝑆 within some range of values (not
from 𝑙 to 𝑟, see below).

However, to make sure that your solution can work in an online fashion, each request will actually
depend on the result of the last sum request. Denote 𝑀 = 1 000 000 001. At any moment, let 𝑥 be
the result of the last sum operation, or just 0 if there were no sum operations before. Then

∙ “+ i" means add((𝑖+ 𝑥) mod 𝑀),

∙ “- i" means del((𝑖+ 𝑥) mod 𝑀),

∙ “? i" means find((𝑖+ 𝑥) mod 𝑀),

∙ “s l r" means sum((𝑙 + 𝑥) mod 𝑀, (𝑟 + 𝑥) mod 𝑀).

Constraints. 1 ≤ 𝑛 ≤ 100 000; 0 ≤ 𝑖 ≤ 109.

Output Format. For each find request, just output “Found" or “Not found" (without quotes; note that the
first letter is capital) depending on whether (𝑖+𝑥) mod 𝑀 is in 𝑆 or not. For each sum query, output
the sum of all the values 𝑣 in 𝑆 such that ((𝑙+𝑥) mod 𝑀) ≤ 𝑣 ≤ ((𝑟+𝑥) mod 𝑀) (it is guaranteed that
in all the tests ((𝑙 + 𝑥) mod 𝑀) ≤ ((𝑟 + 𝑥) mod 𝑀)), where 𝑥 is the result of the last sum operation
or 0 if there was no previous sum operation.

Time Limits.

language C C++ Java Python C# Haskell JavaScript Ruby Scala

time (sec) 1 1 4 120 1.5 2 120 120 4

Memory Limit. 512MB.

14

Sample 1.
Input:
15
? 1
+ 1
? 1
+ 2
s 1 2
+ 1000000000
? 1000000000
- 1000000000
? 1000000000
s 999999999 1000000000
- 2
? 2
- 0
+ 9
s 0 9
Output:
Not found
Found
3
Found
Not found
1
Not found
10

Explanation:
For the first 5 queries, 𝑥 = 0. For the next 5 queries, 𝑥 = 3. For the next 5 queries, 𝑥 = 1. The actual
list of operations is:
find(1)
add(1)
find(1)
add(2)
sum(1, 2) → 3
add(2)
find(2) → Found
del(2)
find(2) → Not found
sum(1, 2) → 1
del(3)
find(3) → Not found
del(1)
add(10)
sum(1, 10) → 10

Adding the same element twice doesn’t change the set. Attempts to remove an element which is not
in the set are ignored.

15

Sample 2.
Input:
5
? 0
+ 0
? 0
- 0
? 0
Output:
Not found
Found
Not found

First, 0 is not in the set. Then it is added to the set. Then it is removed from the set.

Sample 3.
Input:
5
+ 491572259
? 491572259
? 899375874
s 310971296 877523306
+ 352411209
Output:
Found
Not found
491572259

Explanation:
First, 491572259 is added to the set, then it is found there. Number 899375874 is not in the set. The
only number in the set is now 491572259, and it is in the range between 310971296 and 877523306, so
the sum of all numbers in this range is equal to 491572259.

Starter Files
The starter solutions in C++, Java and Python3 read the input, write the output, fully implement splay
tree and show how to use its methods to solve this problem, but don’t solve the whole problem. You need
to finish the implementation. If you use other languages, you need to implement a solution from scratch.

Note that we strongly encourage you to use stress testing, max tests, testing for min and max values of
each parameter according to the restrictions section and other testing techniques and advanced advice from
this reading. If you’re stuck for a long time, you can read ths forum thread to find out what other learners
struggled with, how did they overcome their troubles and what tests did they come up with. If you’re still
stuck, you can read the hints in the next What to Do section mentioning some of the common problems and
how to test for them, resolve some of them. Finally, if none of this worked, we included some of the trickier
test cases in the starter files for this problem, so you can use them to debug your program if it fails on one
of those tests in the grader. However, you will learn more if you pass this problem without looking at those
test cases in the starter files.

What to Do
Use splay tree to efficiently store the set, add, delete and find elements. For each node in the tree, store
additionally the sum of all the elements in the subtree of this node. Don’t forget to update this sum each

16

https://www.coursera.org/learn/algorithmic-toolbox/supplement/RULv4/stress-testing-the-almost-silver-bullet-for-debugging
https://www.coursera.org/learn/data-structures/discussions/weeks/4/threads/_TLGpfoCEeWTnRIwzGCJxQ

time the tree changes. Use split operation to cut ranges from the tree. To get the sum of all the needed
elements after split, just look at the sum stored in the root of the splitted tree. Don’t forget to merge the
trees back after the sum operation.

Some hints based on the problems some learners encountered with their solutions:

∙ Use the sum attribute to keep updated the sum in the subtree, don’t compute the sum from scratch
each time, otherwise it will work too slow.

∙ Don’t forget to do splay after each operation with a splay tree.

∙ Don’t forget to splay the node which was accessed last during the find operation.

∙ Don’t forget to update the root variable after each operation with the tree, because splay operation
changes root, but it doesn’t change where your root variable is pointing in some of the starters.

∙ Don’t forget to merge back after splitting the tree.

∙ When you detach a node from its parent, don’t forget to detach pointers from both ends.

∙ Don’t forget to update all the pointers correctly when merging the trees together.

∙ Test sum operation when there are no elements within the range.

∙ Test sum operation when all the elements are within the range.

∙ Beware of integer overflow.

∙ Don’t forget to check for null when erasing.

∙ Test: Try adding nodes in the tree in such an order that the tree becomes very unbalanced. Play with
this visualization to find out how to do it. Create a very big unbalanced tree. Then try searching for
an element that is not in the tree many times.

∙ Test: add some elements and then remove all the elements from the tree.

Need Help?
Ask a question or see the questions asked by other learners at this forum thread.

17

http://www.cs.usfca.edu/~galles/visualization/SplayTree.html
https://www.coursera.org/learn/data-structures/discussions/weeks/4/threads/_TLGpfoCEeWTnRIwzGCJxQ

5 Rope

Problem Introduction
In this problem you will implement Rope — data structure that can store a string and efficiently cut a part (a
substring) of this string and insert it in a different position. This data structure can be enhanced to become
persistent — that is, to allow access to the previous versions of the string. These properties make it a suitable
choice for storing the text in text editors.

This is a very advanced problem, harder than all the previous advanced problems in this course. Don’t be
upset if it doesn’t crack. Congratulations to all the learners who are able to successfully pass this problem!

Problem Description
Task. You are given a string 𝑆 and you have to process 𝑛 queries. Each query is described by three integers

𝑖, 𝑗, 𝑘 and means to cut substring 𝑆[𝑖..𝑗] (𝑖 and 𝑗 are 0-based) from the string and then insert it after the
𝑘-th symbol of the remaining string (if the symbols are numbered from 1). If 𝑘 = 0, 𝑆[𝑖..𝑗] is inserted
in the beginning. See the examples for further clarification.

Input Format. The first line contains the initial string 𝑆.
The second line contains the number of queries 𝑞.
Next 𝑞 lines contain triples of integers 𝑖, 𝑗, 𝑘.

Constraints. 𝑆 contains only lowercase english letters. 1 ≤ |𝑆| ≤ 300 000; 1 ≤ 𝑞 ≤ 100 000; 0 ≤ 𝑖 ≤ 𝑗 ≤
𝑛− 1; 0 ≤ 𝑘 ≤ 𝑛− (𝑗 − 𝑖+ 1).

Output Format. Output the string after all 𝑞 queries.

Time Limits.

language C C++ Java Python C# Haskell JavaScript Ruby Scala

time (sec) 3 3 6 120 4.5 6 120 120 12

Memory Limit. 512MB.

Sample 1.
Input:
hlelowrold
2
1 1 2
6 6 7
Output:
helloworld

Explanation:
ℎ𝑙𝑒𝑙𝑜𝑤𝑟𝑜𝑙𝑑 → ℎ𝑒𝑙𝑙𝑜𝑤𝑟𝑜𝑙𝑑 → ℎ𝑒𝑙𝑙𝑜𝑤𝑜𝑟𝑙𝑑
When 𝑖 = 𝑗 = 1, 𝑆[𝑖..𝑗] = 𝑙, and it is inserted after the 2-nd symbol of the remaining string ℎ𝑒𝑙𝑜𝑤𝑟𝑜𝑙𝑑,
which gives ℎ𝑒𝑙𝑙𝑜𝑤𝑟𝑜𝑙𝑑. Then 𝑖 = 𝑗 = 6, so 𝑆[𝑖..𝑗] = 𝑟, and it is inserted after the 7-th symbol of the
remaining string ℎ𝑒𝑙𝑙𝑜𝑤𝑜𝑙𝑑, which gives ℎ𝑒𝑙𝑙𝑜𝑤𝑜𝑟𝑙𝑑.

18

Sample 2.
Input:
abcdef
2
0 1 1
4 5 0
Output:
efcabd

𝑎𝑏𝑐𝑑𝑒𝑓 → 𝑐𝑎𝑏𝑑𝑒𝑓 → 𝑒𝑓𝑐𝑎𝑏𝑑

Starter Files
The starter solutions for C++ and Java in this problem read the input, implement a naive algorithm to cut
and paste substrings and write the output. The starter solution for Python3 just reads the input and writes
the output. You need to implement a data structure to make the operations with string very fast. If you use
other languages, you need to implement the solution from scratch.

What to Do
Use splay tree to store the string. Use the split and merge methods of the splay tree to cut and paste
substrings. Think what should be stored as the key in the splay tree. Try to find analogies with the ideas
from this lecture.

Need Help?
Ask a question or see the questions asked by other learners at this forum thread.

6 Appendix

6.1 Compiler Flags
C (gcc 5.2.1). File extensions: .c. Flags:

gcc -pipe -O2 -std=c11 <filename > -lm

C++ (g++ 5.2.1). File extensions: .cc, .cpp. Flags:

g++ -pipe -O2 -std=c++14 <filename > -lm

If your C/C++ compiler does not recognize -std=c++14 flag, try replacing it with -std=c++0x flag
or compiling without this flag at all (all starter solutions can be compiled without it). On Linux
and MacOS, you most probably have the required compiler. On Windows, you may use your favorite
compiler or install, e.g., cygwin.

C# (mono 3.2.8). File extensions: .cs. Flags:

mcs

Go (golang 1.12). File extensions: .go. Flags

go

Haskell (ghc 7.8.4). File extensions: .hs. Flags:

19

https://www.coursera.org/learn/data-structures/lecture/DWPyG/applications
https://www.coursera.org/learn/data-structures/discussions/weeks/4/threads/GSaKafoDEeWYIQ4BcV9YKQ

ghc -O2

Java (Open JDK 8). File extensions: .java. Flags:

javac -encoding UTF -8
java -Xmx1024m

JavaScript (Node v10.15.3). File extensions: .js. No flags:

nodejs

Kotlin (Kotlin 1.2.21). File extensions: .kt. Flags:

kotlinc
java -Xmx1024m

Python 2 (CPython 2.7). File extensions: .py2 or .py (a file ending in .py needs to have a first line which
is a comment containing “python2”). No flags:

python2

Python 3 (CPython 3.4). File extensions: .py3 or .py (a file ending in .py needs to have a first line which
is a comment containing “python3”). No flags:

python3

Ruby (Ruby 2.1.5). File extensions: .rb.

ruby

Rust (Rust 1.28.0). File extensions: .rs.

rustc

Scala (Scala 2.11.6). File extensions: .scala.

scalac

6.2 Frequently Asked Questions
Why My Submission Is Not Graded?

You need to create a submission and upload the source file (rather than the executable file) of your solution.
Make sure that after uploading the file with your solution you press the blue “Submit” button at the bottom.
After that, the grading starts, and the submission being graded is enclosed in an orange rectangle. After the
testing is finished, the rectangle disappears, and the results of the testing of all problems are shown.

20

What Are the Possible Grading Outcomes?

There are only two outcomes: “pass” or “no pass.” To pass, your program must return a correct answer on
all the test cases we prepared for you, and do so under the time and memory constraints specified in the
problem statement. If your solution passes, you get the corresponding feedback "Good job!" and get a point
for the problem. Your solution fails if it either crashes, returns an incorrect answer, works for too long, or
uses too much memory for some test case. The feedback will contain the index of the first test case on which
your solution failed and the total number of test cases in the system. The tests for the problem are numbered
from 1 to the total number of test cases for the problem, and the program is always tested on all the tests
in the order from the first test to the test with the largest number.

Here are the possible outcomes:

∙ Good job! Hurrah! Your solution passed, and you get a point!

∙ Wrong answer. Your solution outputs incorrect answer for some test case. Check that you consider
all the cases correctly, avoid integer overflow, output the required white spaces, output the floating
point numbers with the required precision, don’t output anything in addition to what you are asked
to output in the output specification of the problem statement.

∙ Time limit exceeded. Your solution worked longer than the allowed time limit for some test case.
Check again the running time of your implementation. Test your program locally on the test of max-
imum size specified in the problem statement and check how long it works. Check that your program
doesn’t wait for some input from the user which makes it to wait forever.

∙ Memory limit exceeded. Your solution used more than the allowed memory limit for some test case.
Estimate the amount of memory that your program is going to use in the worst case and check that it
does not exceed the memory limit. Check that your data structures fit into the memory limit. Check
that you don’t create large arrays or lists or vectors consisting of empty arrays or empty strings, since
those in some cases still eat up memory. Test your program locally on the tests of maximum size
specified in the problem statement and look at its memory consumption in the system.

∙ Cannot check answer. Perhaps the output format is wrong. This happens when you output
something different than expected. For example, when you are required to output either “Yes” or
“No”, but instead output 1 or 0. Or your program has empty output. Or your program outputs not
only the correct answer, but also some additional information (please follow the exact output format
specified in the problem statement). Maybe your program doesn’t output anything, because it crashes.

∙ Unknown signal 6 (or 7, or 8, or 11, or some other). This happens when your program
crashes. It can be because of a division by zero, accessing memory outside of the array bounds, using
uninitialized variables, overly deep recursion that triggers a stack overflow, sorting with a contradictory
comparator, removing elements from an empty data structure, trying to allocate too much memory,
and many other reasons. Look at your code and think about all those possibilities. Make sure that you
use the same compiler and the same compiler flags as we do.

∙ Internal error: exception... Most probably, you submitted a compiled program instead of
a source code.

∙ Grading failed. Something wrong happened with the system. Report this through Coursera or edX
Help Center.

May I Post My Solution at the Forum?

Please do not post any solutions at the forum or anywhere on the web, even if a solution does not pass the
tests (as in this case you are still revealing parts of a correct solution). Our students follow the Honor Code:
“I will not make solutions to homework, quizzes, exams, projects, and other assignments available to anyone
else (except to the extent an assignment explicitly permits sharing solutions).”

21

Do I Learn by Trying to Fix My Solution?

My implementation always fails in the grader, though I already tested and stress tested it a lot. Would not it
be better if you gave me a solution to this problem or at least the test cases that you use? I will then be able
to fix my code and will learn how to avoid making mistakes. Otherwise, I do not feel that I learn anything
from solving this problem. I am just stuck.

First of all, learning from your mistakes is one of the best ways to learn.
The process of trying to invent new test cases that might fail your program is difficult but is often

enlightening. Thinking about properties of your program makes you understand what happens inside your
program and in the general algorithm you’re studying much more.

Also, it is important to be able to find a bug in your implementation without knowing a test case and
without having a reference solution, just like in real life. Assume that you designed an application and
an annoyed user reports that it crashed. Most probably, the user will not tell you the exact sequence of
operations that led to a crash. Moreover, there will be no reference application. Hence, it is important to
learn how to find a bug in your implementation yourself, without a magic oracle giving you either a test case
that your program fails or a reference solution. We encourage you to use programming assignments in this
class as a way of practicing this important skill.

If you have already tested your program on all corner cases you can imagine, constructed a set of manual
test cases, applied stress testing, etc, but your program still fails, try to ask for help on the forum. We
encourage you to do this by first explaining what kind of corner cases you have already considered (it may
happen that by writing such a post you will realize that you missed some corner cases!), and only afterwards
asking other learners to give you more ideas for tests cases.

22

	Binary tree traversals
	Is it a binary search tree?
	Is it a binary search tree? Hard version.
	Set with range sums
	Rope
	Appendix
	Compiler Flags
	Frequently Asked Questions

