
Programming Assignment 3:
Hash Tables and Hash Functions

Revision: March 29, 2020

Introduction
In this programming assignment, you will practice implementing hash functions and hash tables and using
them to solve algorithmic problems. In some cases you will just implement an algorithm from the lectures,
while in others you will need to invent an algorithm to solve the given problem using hashing.

Learning Outcomes
Upon completing this programming assignment you will be able to:

1. Apply hashing to solve the given algorithmic problems.

2. Implement a simple phone book manager.

3. Implement a hash table using the chaining scheme.

4. Find all occurrences of a pattern in text using Rabin–Karp’s algorithm.

5. Applying hashing to solve other string processing problems.

Passing Criteria: 2 out of 6
Passing this programming assignment requires passing at least 2 out of 6 programming challenges from this
assignment. In turn, passing a programming challenge requires implementing a solution that passes all the
tests for this problem in the grader and does so under the time and memory limits specified in the problem
statement.

Contents
1 Phone book 2

2 Hashing with chains 5

3 Find pattern in text 9

4 Substring equality 11

5 Longest common substring 14

6 Pattern matching with mismatches 16

7 Appendix 17
7.1 Compiler Flags . 17
7.2 Frequently Asked Questions . 18

1

1 Phone book

Problem Introduction
In this problem you will implement a simple phone book manager.

Problem Description
Task. In this task your goal is to implement a simple phone book manager. It should be able to process the

following types of user’s queries:

∙ add number name. It means that the user adds a person with name name and phone number
number to the phone book. If there exists a user with such number already, then your manager
has to overwrite the corresponding name.

∙ del number. It means that the manager should erase a person with number number from the phone
book. If there is no such person, then it should just ignore the query.

∙ find number. It means that the user looks for a person with phone number number. The manager
should reply with the appropriate name, or with string “not found" (without quotes) if there is
no such person in the book.

Input Format. There is a single integer 𝑁 in the first line — the number of queries. It’s followed by 𝑁
lines, each of them contains one query in the format described above.

Constraints. 1 ≤ 𝑁 ≤ 105. All phone numbers consist of decimal digits, they don’t have leading zeros, and
each of them has no more than 7 digits. All names are non-empty strings of latin letters, and each of
them has length at most 15. It’s guaranteed that there is no person with name “not found".

Output Format. Print the result of each find query — the name corresponding to the phone number or
“not found" (without quotes) if there is no person in the phone book with such phone number. Output
one result per line in the same order as the find queries are given in the input.

Time Limits. C: 3 sec, C++: 3 sec, Java: 6 sec, Python: 6 sec. C#: 4.5 sec, Haskell: 6 sec, JavaScript: 9
sec, Ruby: 9 sec, Scala: 9 sec.

Memory Limit. 512MB.

2

Sample 1.
Input:
12
add 911 police
add 76213 Mom
add 17239 Bob
find 76213
find 910
find 911
del 910
del 911
find 911
find 76213
add 76213 daddy
find 76213
Output:
Mom
not found
police
not found
Mom
daddy

76213 is Mom’s number, 910 is not a number in the phone book, 911 is the number of police, but then
it was deleted from the phone book, so the second search for 911 returned “not found". Also, note that
when the daddy was added with the same phone number 76213 as Mom’s phone number, the contact’s
name was rewritten, and now search for 76213 returns “daddy" instead of “Mom".

Sample 2.
Input:
8
find 3839442
add 123456 me
add 0 granny
find 0
find 123456
del 0
del 0
find 0
Output:
not found
granny
me
not found

Recall that deleting a number that doesn’t exist in the phone book doesn’t change anything.

Starter Files
The starter solutions for C++, Java and Python3 in this problem read the input, implement a naive algorithm
to look up names by phone numbers and write the output. You need to use a fast data structure to implement

3

a better algorithm. If you use other languages, you need to implement the solution from scratch.

What to Do
Use the direct addressing scheme.

Need Help?
Ask a question or see the questions asked by other learners at this forum thread.

4

https://www.coursera.org/learn/data-structures/discussions/weeks/3/threads/FpHLCPoCEeWqpApEWVJglQ

2 Hashing with chains

Problem Introduction
In this problem you will implement a hash table using the chaining scheme. Chaining is one of the most
popular ways of implementing hash tables in practice. The hash table you will implement can be used to
implement a phone book on your phone or to store the password table of your computer or web service (but
don’t forget to store hashes of passwords instead of the passwords themselves, or you will get hacked!).

Problem Description
Task. In this task your goal is to implement a hash table with lists chaining. You are already given the

number of buckets 𝑚 and the hash function. It is a polynomial hash function

ℎ(𝑆) =

⎛⎝|𝑆|−1∑︁
𝑖=0

𝑆[𝑖]𝑥𝑖 mod 𝑝

⎞⎠ mod 𝑚,

where 𝑆[𝑖] is the ASCII code of the 𝑖-th symbol of 𝑆, 𝑝 = 1 000 000 007 and 𝑥 = 263. Your program
should support the following kinds of queries:

∙ add string — insert string into the table. If there is already such string in the hash table, then
just ignore the query.

∙ del string — remove string from the table. If there is no such string in the hash table, then
just ignore the query.

∙ find string — output “yes" or “no" (without quotes) depending on whether the table contains
string or not.

∙ check 𝑖 — output the content of the 𝑖-th list in the table. Use spaces to separate the elements of
the list. If 𝑖-th list is empty, output a blank line.

When inserting a new string into a hash chain, you must insert it in the beginning of the chain.

Input Format. There is a single integer 𝑚 in the first line — the number of buckets you should have. The
next line contains the number of queries 𝑁 . It’s followed by 𝑁 lines, each of them contains one query
in the format described above.

Constraints. 1 ≤ 𝑁 ≤ 105; 𝑁
5 ≤ 𝑚 ≤ 𝑁 . All the strings consist of latin letters. Each of them is non-empty

and has length at most 15.

Output Format. Print the result of each of the find and check queries, one result per line, in the same
order as these queries are given in the input.

Time Limits. C: 1 sec, C++: 1 sec, Java: 5 sec, Python: 7 sec. C#: 1.5 sec, Haskell: 2 sec, JavaScript: 7
sec, Ruby: 7 sec, Scala: 7 sec.

Memory Limit. 512MB.

5

Sample 1.
Input:
5
12
add world
add HellO
check 4
find World
find world
del world
check 4
del HellO
add luck
add GooD
check 2
del good

Output:
HellO world
no
yes
HellO
GooD luck

The ASCII code of ’w’ is 119, for ’o’ it is 111, for ’r’ it is 114, for ’l’ it is 108, and for ’d’
it is 100. Thus, ℎ(“world") = (119 + 111 × 263 + 114 × 2632 + 108 × 2633 + 100 × 2634 mod
1 000 000 007) mod 5 = 4. It turns out that the hash value of 𝐻𝑒𝑙𝑙𝑂 is also 4. Recall that we al-
ways insert in the beginning of the chain, so after adding “world" and then “HellO" in the same
chain index 4, first goes “HellO" and then goes “world". Of course, “World" is not found, and
“world" is found, because the strings are case-sensitive, and the codes of ’W’ and ’w’ are differ-
ent. After deleting “world", only “HellO" is found in the chain 4. Similarly to “world" and “HellO",
after adding “luck" and “GooD" to the same chain 2, first goes “GooD" and then “luck".

Sample 2.
Input:
4
8
add test
add test
find test
del test
find test
find Test
add Test
find Test
Output:
yes
no
no
yes

Adding “test" twice is the same as adding “test" once, so first find returns “yes". After del, “test" is

6

no longer in the hash table. First time find doesn’t find “Test” because it was not added before, and
strings are case-sensitive in this problem. Second time “Test” can be found, because it has just been
added.

Sample 3.
Input:
3
12
check 0
find help
add help
add del
add add
find add
find del
del del
find del
check 0
check 1
check 2
Output:

no
yes
yes
no

add help

Explanation:
Note that you need to output a blank line when you handle an empty chain. Note that the strings
stored in the hash table can coincide with the commands used to work with the hash table.

Starter Files
There are starter solutions only for C++, Java and Python3, and if you use other languages, you need
to implement solution from scratch. Starter solutions read the input, do a full scan of the whole table to
simulate each find operation and write the output. This naive simulation algorithm is too slow, so you need
to implement the real hash table.

What to Do
Follow the explanations about the chaining scheme from the lectures. Remember to always insert new strings
in the beginning of the chain. Remember to output a blank line when check operation is called on an empty
chain.

Some hints based on the problems encountered by learners:

∙ Beware of integer overflow. Use long long type in C++ and long type in Java where appropriate. Take
everything (mod 𝑝) as soon as possible while computing something (mod 𝑝), so that the numbers are
always between 0 and 𝑝− 1.

7

∙ Beware of taking negative numbers (mod 𝑝). In many programming languages, (−2)%5 ̸= 3%5. Thus
you can compute the same hash values for two strings, but when you compare them, they appear to
be different. To avoid this issue, you can use such construct in the code: 𝑥 ← ((𝑎%𝑝) + 𝑝)%𝑝 instead
of just 𝑥← 𝑎%𝑝.

Need Help?
Ask a question or see the questions asked by other learners at this forum thread.

8

https://www.coursera.org/learn/data-structures/discussions/weeks/3/threads/UaOOkPoCEeWEAhLOZ9BW_w

3 Find pattern in text

Problem Introduction
In this problem, your goal is to implement the Rabin–Karp’s algorithm.

Problem Description
Task. In this problem your goal is to implement the Rabin–Karp’s algorithm for searching the given pattern

in the given text.

Input Format. There are two strings in the input: the pattern 𝑃 and the text 𝑇 .

Constraints. 1 ≤ |𝑃 | ≤ |𝑇 | ≤ 5 · 105. The total length of all occurrences of 𝑃 in 𝑇 doesn’t exceed 108. The
pattern and the text contain only latin letters.

Output Format. Print all the positions of the occurrences of 𝑃 in 𝑇 in the ascending order. Use 0-based
indexing of positions in the the text 𝑇 .

Time Limits. C: 1 sec, C++: 1 sec, Java: 5 sec, Python: 5 sec. C#: 1.5 sec, Haskell: 2 sec, JavaScript: 3
sec, Ruby: 3 sec, Scala: 3 sec.

Memory Limit. 512MB.

Sample 1.
Input:
aba
abacaba
Output:
0 4

Explanation:
The pattern 𝑎𝑏𝑎 can be found in positions 0 (abacaba) and 4 (abacaba) of the text 𝑎𝑏𝑎𝑐𝑎𝑏𝑎.

Sample 2.
Input:
Test
testTesttesT
Output:
4

Explanation:
Pattern and text are case-sensitive in this problem. Pattern 𝑇𝑒𝑠𝑡 can only be found in position 4 in
the text 𝑡𝑒𝑠𝑡𝑇𝑒𝑠𝑡𝑡𝑒𝑠𝑇 .

Sample 3.
Input:
aaaaa
baaaaaaa
Output:
1 2 3

Note that the occurrences of the pattern in the text can be overlapping, and that’s ok, you still need
to output all of them.

9

Starter Files
The starter solutions in C++, Java and Python3 read the input, apply the naive 𝑂(|𝑇 ||𝑃 |) algorithm to
this problem and write the output. You need to implement the Rabin–Karp’s algorithm instead of the naive
algorithm and thus significantly speed up the solution. If you use other languages, you need to implement a
solution from scratch.

What to Do
Implement the fast version of the Rabin–Karp’s algorithm from the lectures.

Some hints based on the problems encountered by learners:

∙ Beware of integer overflow. Use long long type in C++ and long type in Java where appropriate. Take
everything (mod 𝑝) as soon as possible while computing something (mod 𝑝), so that the numbers are
always between 0 and 𝑝− 1.

∙ Beware of taking negative numbers (mod 𝑝). In many programming languages, (−2)%5 ̸= 3%5. Thus
you can compute the same hash values for two strings, but when you compare them, they appear to
be different. To avoid this issue, you can use such construct in the code: 𝑥 ← ((𝑎%𝑝) + 𝑝)%𝑝 instead
of just 𝑥← 𝑎%𝑝.

∙ Use operator == in Python instead of implementing your own function AreEqual for strings, because
built-in operator == will work much faster.

∙ In C++, method substr of string creates a new string, uses additional memory and time for that,
so use it carefully and avoid creating lots of new strings. When you need to compare pattern with
a substring of text, do it without calling substr.

∙ In Java, however, method substring does NOT create a new String. Avoid using new String where
it is not needed, just use substring.

Need Help?
Ask a question or see the questions asked by other learners at this forum thread.

10

https://www.coursera.org/learn/data-structures/discussions/weeks/3/threads/cpyRBfoCEeWTZBIrc0wCDw

4 Substring equality

Problem Introduction
In this problem, you will use hashing to design an algorithm that is able to preprocess a given string 𝑠
to answer any query of the form “are these two substrings of 𝑠 equal?” efficiently. This, in turn, is a basic
building block in many string processing algorithms.

Problem Description
Input Format. The first line contains a string 𝑠 consisting of small Latin letters. The second line contains

the number of queries 𝑞. Each of the next 𝑞 lines specifies a query by three integers 𝑎, 𝑏, and 𝑙.

Constraints. 1 ≤ |𝑠| ≤ 500 000. 1 ≤ 𝑞 ≤ 100 000. 0 ≤ 𝑎, 𝑏 ≤ |𝑠| − 𝑙 (hence the indices 𝑎 and 𝑏 are 0-based).

Output Format. For each query, output “Yes” if 𝑠𝑎𝑠𝑎+1. . .𝑠𝑎+𝑙−1 = 𝑠𝑏𝑠𝑏+1. . .𝑠𝑏+𝑙−1 are equal, and “No”
otherwise.

Time Limits. C: 1 sec, C++: 1 sec, Java: 2 sec, Python: 10 sec. C#: 1.5 sec, Haskell: 2 sec, JavaScript: 5
sec, Ruby: 5 sec, Scala: 5 sec.

Memory Limit. 512MB.

Sample 1.
Input:
trololo
4
0 0 7
2 4 3
3 5 1
1 3 2
Output:
Yes
Yes
Yes
No

0 0 7 → trololo = trololo

2 4 3 → trololo = trololo

3 5 1 → trololo = trololo

1 3 2 → trololo ̸= trololo

What to Do
For a string 𝑡 = 𝑡0𝑡1 · · · 𝑡𝑚−1 of length 𝑚 and an integer 𝑥, define a polynomial hash function

𝐻(𝑡) =

𝑚−1∑︁
𝑗=0

𝑡𝑗𝑥
𝑚−𝑗−1 = 𝑡0𝑥

𝑚−1 + 𝑡1𝑥
𝑚−2 + · · ·+ 𝑡𝑚−2𝑥+ 𝑡𝑚−1 .

Let 𝑠𝑎𝑠𝑎+1 · · · 𝑠𝑎+𝑙−1 be a substring of the given string 𝑠 = 𝑠0𝑠1 · · · 𝑠𝑛−1. A nice property of the poly-
nomial hash function 𝐻 is that 𝐻(𝑠𝑎𝑠𝑎+1 · · · 𝑠𝑎+𝑙−1) can be expressed through 𝐻(𝑠0𝑠1 · · · 𝑠𝑎+𝑙−1) and

11

𝐻(𝑠0𝑠1 · · · 𝑠𝑎−1), i.e., through hash values of two prefixes of 𝑠:

𝐻(𝑠𝑎𝑠𝑎+1 · · · 𝑠𝑎+𝑙−1) = 𝑠𝑎𝑥
𝑙−1 + 𝑠𝑎+1𝑥

𝑙−2 + · · ·+ 𝑠𝑎+𝑙−1 =

= 𝑠0𝑥
𝑎+𝑙−1 + 𝑠1𝑥

𝑎+𝑙−2 + · · ·+ 𝑠𝑎+𝑙−1−
− 𝑥𝑙(𝑠0𝑥

𝑎−1 + 𝑠1𝑥
𝑎−2 + · · ·+ 𝑠𝑎−1) =

= 𝐻(𝑠0𝑠1 · · · 𝑠𝑎+𝑙−1)− 𝑥𝑙𝐻(𝑠0𝑠1 · · · 𝑠𝑎−1)

This leads us to the following natural idea: we precompute and store the hash values of all prefixes of 𝑠: let
ℎ[0] = 0 and, for 1 ≤ 𝑖 ≤ 𝑛, let ℎ[𝑖] = 𝐻(𝑠0𝑠1 · · · 𝑠𝑖−1). Then, the identity above becomes

𝐻(𝑠𝑎𝑠𝑎+1 · · · 𝑠𝑎+𝑙−1) = ℎ[𝑎+ 𝑙]− 𝑥𝑙ℎ[𝑎] .

In other words, we are able to get the hash value of any substring of 𝑠 in just constant time! Clearly, if
𝐻(𝑠𝑎𝑠𝑎+1 · · · 𝑠𝑎+𝑙−1) ̸= 𝐻(𝑠𝑏𝑠𝑏+1 · · · 𝑠𝑏+𝑙−1), then the corresponding two substrings (𝑠𝑎𝑠𝑎+1 · · · 𝑠𝑎+𝑙−1 and
𝑠𝑏𝑠𝑏+1 · · · 𝑠𝑏+𝑙−1) are different. However, if the hash values are the same, it is still possible that the substrings
are different — this is called a collision. Below, we discuss how to reduce the probability of a collision.

Recall that in practice one never computes the exact value of a polynomial hash function: everything is
computed modulo 𝑚 for some fixed integer 𝑚. This is done to ensure that all the computations are efficient
and that the hash values are small enough. Recall also that when computing 𝐻(𝑠) mod 𝑚 it is important to
take every intermediate step (rather then the final result) modulo 𝑚.

It can be shown that if 𝑠1 and 𝑠2 are two different strings of length 𝑛 and 𝑚 is a prime integer, then the
probability that 𝐻(𝑠1) mod 𝑚 = 𝐻(𝑠2) mod 𝑚 (over the choices of 0 ≤ 𝑥 ≤ 𝑚 − 1) is at most 𝑛

𝑚 (roughly,
this is because 𝐻(𝑠1)−𝐻(𝑠2) is a non-zero polynomial of degree at most 𝑛− 1 and hence can have at most
𝑛 roots modulo 𝑚). To further reduce the probability of a collision, one may take two different modulus.

Overall, this gives the following approach.

1. Fix 𝑚1 = 109 + 7 and 𝑚2 = 109 + 9.

2. Select a random 𝑥 from 1 to 109.

3. Compute arrays ℎ1[0..𝑛] and ℎ2[0..𝑛]: ℎ1[0] = ℎ2[0] = 0 and, for 1 ≤ 𝑖 ≤ 𝑛, ℎ1[𝑖] = 𝐻(𝑠0 · · · 𝑠𝑖−1) mod
𝑚1 and ℎ2[𝑖] = 𝐻(𝑠0 · · · 𝑠𝑖−1) mod 𝑚2. We illustrate this for ℎ1 below.

allocate ℎ1[0..𝑛]
ℎ1[0]← 0
for 𝑖 from 1 to 𝑛:

ℎ1[𝑖]← (𝑥 · ℎ1[𝑖− 1] + 𝑠𝑖) mod 𝑚1

4. For every query (𝑎, 𝑏, 𝑙):

(a) Use precomputed hash values, to compute the hash values of the substrings 𝑠𝑎𝑠𝑎+1 · · · 𝑠𝑎+𝑙−1 and
𝑠𝑏𝑠𝑏+1 · · · 𝑠𝑏+𝑙−1 modulo 𝑚1 and 𝑚2.

(b) Output “Yes”, if

𝐻(𝑠𝑎𝑠𝑎+1 · · · 𝑠𝑎+𝑙−1) mod 𝑚1 = 𝐻(𝑠𝑏𝑠𝑏+1 · · · 𝑠𝑏+𝑙−1) mod 𝑚1 and
𝐻(𝑠𝑎𝑠𝑎+1 · · · 𝑠𝑎+𝑙−1) mod 𝑚2 = 𝐻(𝑠𝑏𝑠𝑏+1 · · · 𝑠𝑏+𝑙−1) mod 𝑚2 .

(c) Otherwise, output “No”.

Note that, in contrast to Karp–Rabin algorithm, we do not compare the substrings naively when their
hashes coincide. The probability of this event is at most 𝑛

𝑚1
· 𝑛
𝑚2
≤ 10−9. (In fact, for random strings the

probability is even much smaller: 10−18. In this problem, the strings are not random, but the probability of
collision is still very small.)

12

Need Help?
Ask a question or see the questions asked by other learners at this forum thread.

13

https://www.coursera.org/learn/data-structures/discussions/weeks/3/threads/6eQfbpK4Eem9QgqtQTnkAg

5 Longest common substring

Problem Introduction
In the longest common substring problem one is given two strings 𝑠 and 𝑡 and the goal is to find a string 𝑤
of maximal length that is a substring of both 𝑠 and 𝑡. This is a natural measure of similarity between two
strings. The problem has applications in text comparison and compression as well as in bioinformatics.

The problem can be seen as a special case of the edit distance problem (where only insertions and
deletions are allowed). Hence, it can be solved in time 𝑂(|𝑠| · |𝑡|) using dynamic programming. Later in
this specialization, we will learn highly non-trivial data structures for solving this problem in linear time
𝑂(|𝑠|+ |𝑡|). In this problem, your goal is to use hashing to solve it in almost linear time.

Problem Description
Input Format. Every line of the input contains two strings 𝑠 and 𝑡 consisting of lower case Latin letters.

Constraints. The total length of all 𝑠’s as well as the total length of all 𝑡’s does not exceed 100 000.

Output Format. For each pair of strings 𝑠 and 𝑡𝑖, find its longest common substring and specify it by
outputting three integers: its starting position in 𝑠, its starting position in 𝑡 (both 0-based), and its
length. More formally, output integers 0 ≤ 𝑖 < |𝑠|, 0 ≤ 𝑗 < |𝑡|, and 𝑙 ≥ 0 such that 𝑠𝑖𝑠𝑖+1 · · · 𝑠𝑖+𝑙−1 =
𝑡𝑗𝑡𝑗+1 · · · 𝑡𝑗+𝑙−1 and 𝑙 is maximal. (As usual, if there are many such triples with maximal 𝑙, output any
of them.)

Time Limits. C: 2 sec, C++: 2 sec, Java: 5 sec, Python: 15 sec. C#: 3 sec, Haskell: 4 sec, JavaScript: 10
sec, Ruby: 10 sec, Scala: 10 sec.

Memory Limit. 512MB.

Sample 1.
Input:
cool toolbox
aaa bb
aabaa babbaab
Output:
1 1 3
0 1 0
0 4 3

Explanation:
The longest common substring of the first pair of strings is ool, it starts at the first position in toolbox
and at the first position in cool. The strings from the second line do not share any non-empty common
substrings (in this case, 𝑙 = 0 and one may output any indices 𝑖 and 𝑗). Finally, the last two strings
share a substring aab that has length 3 and starts at position 0 in the first string and at position 4 in
the second one. Note that for this pair of string one may output 2 3 3 as well.

What to Do
For every pair of strings 𝑠 and 𝑡, use binary search to find the length of the longest common substring. To
check whether two strings have a common substring of length 𝑘,

∙ precompute hash values of all substrings of length 𝑘 of 𝑠 and 𝑡;

∙ make sure to use a few hash functions (but not just one) to reduce the probability of a collision;

14

∙ store hash values of all substrings of length 𝑘 of the string 𝑠 in a hash table; then, go through all
substrings of length 𝑘 of the string 𝑡 and check whether the hash value of this substring is present in
the hash table.

Need Help?
Ask a question or see the questions asked by other learners at this forum thread.

15

https://www.coursera.org/learn/data-structures/discussions/weeks/3/threads/O0VDK7KqEemMUQoC5G__rA

6 Pattern matching with mismatches

Problem Introduction
A natural generalization of the pattern matching problem is the following: find all text locations where dis-
tance from pattern is sufficiently small. This problems has applications in text searching (where mismatches
correspond to typos) and bioinformatics (where mismatches correspond to mutations).

Problem Description
Task. For an integer parameter 𝑘 and two strings 𝑡 = 𝑡0𝑡1 · · · 𝑡𝑚−1 and 𝑝 = 𝑝0𝑝1 · · · 𝑝𝑛−1, we say that

𝑝 occurs in 𝑡 at position 𝑖 with at most 𝑘 mismatches if the strings 𝑝 and 𝑡[𝑖 : 𝑖+ 𝑝) = 𝑡𝑖𝑡𝑖+1 · · · 𝑡𝑖+𝑛−1

differ in at most 𝑘 positions.

Input Format. Every line of the input contains an integer 𝑘 and two strings 𝑡 and 𝑝 consisting of lower
case Latin letters.

Constraints. 0 ≤ 𝑘 ≤ 5, 1 ≤ |𝑡| ≤ 200 000, 1 ≤ |𝑝| ≤ min{|𝑡|, 100 000}. The total length of all 𝑡’s does not
exceed 200 000, the total length of all 𝑝’s does not exceed 100 000.

Output Format. For each triple (𝑘, 𝑡, 𝑝), find all positions 0 ≤ 𝑖1 < 𝑖2 < · · · < 𝑖𝑙 < |𝑡| where 𝑝 occurs in 𝑡
with at most 𝑘 mismatches. Output 𝑙 and 𝑖1, 𝑖2, . . . , 𝑖𝑙.

Time Limits. C: 2 sec, C++: 2 sec, Java: 5 sec, Python: 40 sec. C#: 3 sec, Haskell: 4 sec, JavaScript: 10
sec, Ruby: 10 sec, Scala: 10 sec.

Memory Limit. 512MB.

Sample 1.
Input:
0 ababab baaa
1 ababab baaa
1 xabcabc ccc
2 xabcabc ccc
3 aaa xxx
Output:
0
1 1
0
4 1 2 3 4
1 0

Explanation:
For the first triple, there are no exact matches. For the second triple, baaa has distance one from the
pattern. For the third triple, there are no occurrences with at most one mismatch. For the fourth triple,
any (length three) substring of 𝑝 containing at least one c has distance at most two from 𝑡. For the
fifth triple, 𝑡 and 𝑝 differ in three positions.

What to Do
Start by computing hash values of prefixes of 𝑡 and 𝑝 and their partial sums. This allows you to compare any
two substrings of 𝑡 and 𝑝 in expected constant time. For each candidate position 𝑖, perform 𝑘 steps of the
form “find the next mismatch”. Each such mismatch can be found using binary search. Overall, this gives an
algorithm running in time 𝑂(𝑛𝑘 log 𝑛).

16

Need Help?
Ask a question or see the questions asked by other learners at this forum thread.

7 Appendix

7.1 Compiler Flags
C (gcc 7.4.0). File extensions: .c. Flags:

gcc -pipe -O2 -std=c11 <filename > -lm

C++ (g++ 7.4.0). File extensions: .cc, .cpp. Flags:

g++ -pipe -O2 -std=c++14 <filename > -lm

If your C/C++ compiler does not recognize -std=c++14 flag, try replacing it with -std=c++0x flag
or compiling without this flag at all (all starter solutions can be compiled without it). On Linux
and MacOS, you most probably have the required compiler. On Windows, you may use your favorite
compiler or install, e.g., cygwin.

C# (mono 4.6.2). File extensions: .cs. Flags:

mcs

Go (golang 1.13.4). File extensions: .go. Flags

go

Haskell (ghc 8.0.2). File extensions: .hs. Flags:

ghc -O2

Java (OpenJDK 1.8.0_232). File extensions: .java. Flags:

javac -encoding UTF -8
java -Xmx1024m

JavaScript (NodeJS 12.14.0). File extensions: .js. No flags:

nodejs

Kotlin (Kotlin 1.3.50). File extensions: .kt. Flags:

kotlinc
java -Xmx1024m

Python (CPython 3.6.9). File extensions: .py. No flags:

python3

Ruby (Ruby 2.5.1p57). File extensions: .rb.

ruby

Rust (Rust 1.37.0). File extensions: .rs.

rustc

Scala (Scala 2.12.10). File extensions: .scala.

scalac

17

https://www.coursera.org/learn/data-structures/discussions/weeks/3/threads/9fWlJLuNEem-AQpTfWC26g

7.2 Frequently Asked Questions
Why My Submission Is Not Graded?

You need to create a submission and upload the source file (rather than the executable file) of your solution.
Make sure that after uploading the file with your solution you press the blue “Submit” button at the bottom.
After that, the grading starts, and the submission being graded is enclosed in an orange rectangle. After the
testing is finished, the rectangle disappears, and the results of the testing of all problems are shown.

What Are the Possible Grading Outcomes?

There are only two outcomes: “pass” or “no pass.” To pass, your program must return a correct answer on
all the test cases we prepared for you, and do so under the time and memory constraints specified in the
problem statement. If your solution passes, you get the corresponding feedback "Good job!" and get a point
for the problem. Your solution fails if it either crashes, returns an incorrect answer, works for too long, or
uses too much memory for some test case. The feedback will contain the index of the first test case on which
your solution failed and the total number of test cases in the system. The tests for the problem are numbered
from 1 to the total number of test cases for the problem, and the program is always tested on all the tests
in the order from the first test to the test with the largest number.

Here are the possible outcomes:

∙ Good job! Hurrah! Your solution passed, and you get a point!

∙ Wrong answer. Your solution outputs incorrect answer for some test case. Check that you consider
all the cases correctly, avoid integer overflow, output the required white spaces, output the floating
point numbers with the required precision, don’t output anything in addition to what you are asked
to output in the output specification of the problem statement.

∙ Time limit exceeded. Your solution worked longer than the allowed time limit for some test case.
Check again the running time of your implementation. Test your program locally on the test of max-
imum size specified in the problem statement and check how long it works. Check that your program
doesn’t wait for some input from the user which makes it to wait forever.

∙ Memory limit exceeded. Your solution used more than the allowed memory limit for some test case.
Estimate the amount of memory that your program is going to use in the worst case and check that it
does not exceed the memory limit. Check that your data structures fit into the memory limit. Check
that you don’t create large arrays or lists or vectors consisting of empty arrays or empty strings, since
those in some cases still eat up memory. Test your program locally on the tests of maximum size
specified in the problem statement and look at its memory consumption in the system.

∙ Cannot check answer. Perhaps the output format is wrong. This happens when you output
something different than expected. For example, when you are required to output either “Yes” or
“No”, but instead output 1 or 0. Or your program has empty output. Or your program outputs not
only the correct answer, but also some additional information (please follow the exact output format
specified in the problem statement). Maybe your program doesn’t output anything, because it crashes.

∙ Unknown signal 6 (or 7, or 8, or 11, or some other). This happens when your program
crashes. It can be because of a division by zero, accessing memory outside of the array bounds, using
uninitialized variables, overly deep recursion that triggers a stack overflow, sorting with a contradictory
comparator, removing elements from an empty data structure, trying to allocate too much memory,
and many other reasons. Look at your code and think about all those possibilities. Make sure that you
use the same compiler and the same compiler flags as we do.

∙ Internal error: exception... Most probably, you submitted a compiled program instead of
a source code.

18

∙ Grading failed. Something wrong happened with the system. Report this through Coursera or edX
Help Center.

May I Post My Solution at the Forum?

Please do not post any solutions at the forum or anywhere on the web, even if a solution does not pass the
tests (as in this case you are still revealing parts of a correct solution). Our students follow the Honor Code:
“I will not make solutions to homework, quizzes, exams, projects, and other assignments available to anyone
else (except to the extent an assignment explicitly permits sharing solutions).”

Do I Learn by Trying to Fix My Solution?

My implementation always fails in the grader, though I already tested and stress tested it a lot. Would not it
be better if you gave me a solution to this problem or at least the test cases that you use? I will then be able
to fix my code and will learn how to avoid making mistakes. Otherwise, I do not feel that I learn anything
from solving this problem. I am just stuck.

First of all, learning from your mistakes is one of the best ways to learn.
The process of trying to invent new test cases that might fail your program is difficult but is often

enlightening. Thinking about properties of your program makes you understand what happens inside your
program and in the general algorithm you’re studying much more.

Also, it is important to be able to find a bug in your implementation without knowing a test case and
without having a reference solution, just like in real life. Assume that you designed an application and
an annoyed user reports that it crashed. Most probably, the user will not tell you the exact sequence of
operations that led to a crash. Moreover, there will be no reference application. Hence, it is important to
learn how to find a bug in your implementation yourself, without a magic oracle giving you either a test case
that your program fails or a reference solution. We encourage you to use programming assignments in this
class as a way of practicing this important skill.

If you have already tested your program on all corner cases you can imagine, constructed a set of manual
test cases, applied stress testing, etc, but your program still fails, try to ask for help on the forum. We
encourage you to do this by first explaining what kind of corner cases you have already considered (it may
happen that by writing such a post you will realize that you missed some corner cases!), and only afterwards
asking other learners to give you more ideas for tests cases.

19

	Phone book
	Hashing with chains
	Find pattern in text
	Substring equality
	Longest common substring
	Pattern matching with mismatches
	Appendix
	Compiler Flags
	Frequently Asked Questions

