

دانشکده مهندسی کامپیوتر هوش مصنوعی و سیستمهای خبره

تمرین تشریحی پنجم

در طراحی این تمرین از منابع کورس ${
m CS188}$ دانشگاه برکلی استفاده شده است.

Reinforcement Learning

Imagine an unknown game which has only two states {A,B} and in each state the agent has two actions to choose from: {Up,Down}.Suppose a game agent chooses actions according to some policy π and generates the following sequence of actions and rewards in the unknown game:

t	s_t	a_t	s_{t+1}	r_t
0	A	Down	В	2
1	В	Down	В	-4
2	В	Up	В	0
3	В	Up	A	3
4	A	Up	A	-1

Unless specified otherwise, assume a discount factor $\Upsilon=0.5$ and a learning rate $\alpha = 0.5$

١.١

Recall the update function of Q-learning is:

$$Q(s_t, a_t) \leftarrow (1 - \alpha)Q(s_t, a_t) + \alpha(r_t + \gamma \max_{a'} Q(s_{t+1}, a'))$$

Assume that all Q-values initialized as 0. What are the following Q-values learned by running Q-learning with the above experience sequence?

$$Q(A, Down) = \underline{\hspace{1cm}}, \qquad Q(B, Up) = \underline{\hspace{1cm}}$$

Your Solution:

۲.۱

In model-based reinforcement learning, we first estimate the transition function T(s,a,s') and the reward function R(s,a,s'). Fill in the following estimates of T and R, estimated from the experience above. Write "n/a" if not applicable or undefined.

$$\hat{T}(A, Up, A) = \underline{\hspace{1cm}}, \quad \hat{T}(B, Up, B) = \underline{\hspace{1cm}}, \quad \hat{T}(B, Up, A) = \underline{\hspace{1cm}}, \quad \hat{T}(B, Up, B) = \underline{\hspace{1cm}}, \quad \hat{R}(B, Up, A) = \underline{\hspace{1cm}}, \quad \hat{R}(B, Up, B) = \underline{\hspace{1cm}}, \quad \hat{R}$$

Your Solution:

٣.١

To decouple this question from the previous one, assume we had **a different experience** and ended up with the following estimates of the transition and reward functions:

s	a	s'	$\hat{T}(s,a,s')$	$\hat{R}(s,a,s')$
A	Up	A	1	10
A	Down	A	0.5	2
A	Down	В	0.5	2
В	Up	A	1	-5
В	Down	В	1	8

1.7.1

Give the optimal policy $\hat{\pi}^*(s)$ and $\hat{V}^*(s)$ for the MDP with transition function \hat{T} and reward function \hat{R} .

Hint: for any
$$x \in R$$
, $|x| < 1$, we have $1 + x + x^2 + x^3 + x^4 + ... = 1/(1-x)$

$$\hat{\pi}^*(A) = \underline{\hspace{1cm}}, \qquad \hat{\pi}^*(B) = \underline{\hspace{1cm}}, \qquad \hat{V}^*(A) = \underline{\hspace{1cm}}, \qquad \hat{V}^*(B) = \underline{\hspace{1cm}}.$$

Your Solution:

۲.۳.۱

If we repeatedly feed this new experience sequence through our Q-learning algorithm, what values will it converge to? Assume the learning rate α_t is properly chosen so that convergence is guaranteed.

- 1) the values found above, \hat{V}^*
- 2) the optimal values, V^*
- 3) neither \hat{V}^* nor V^*
- 4) not enough information to determine

Explain your answer in less than 2 lines:

Policy Evaluation ٢

In this question, you will be working in an MDP with states S, actions A, discount factor Υ , transition function T and reward function R.

We have some fixed policy $\pi: S \to A$, which returns an action $a = \pi(s)$ for each state $s \in S$. We want to learn the Q function $Q^{\pi}(s,a)$ for this policy: the expected discounted reward from taking action a in state s and then continuing to act according to π :

$$Q^{\pi}(s, a) = \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma Q^{\pi}(s', \pi(s'))]$$

The policy π will not change while running any of the algorithms below.

1.7

Can we guarantee anything about how the values Q^{π} compare to the values Q^{*} for an optimal policy π^* ?

- 1) $Q^{\pi}(s, a) \leq Q^{*}(s, a)$ for all s,a
- 2) $Q^{\pi}(s, a) = Q^{*}(s, a)$ for all s,a
- 3) $Q^{\pi}(s,a) \geq Q^*(s,a)$ for all s,a
- 4) None of the above are guaranteed

Explain your answer in less than 2 lines:

۲.۲

Suppose T and R are unknown. You will develop sample-based methods to estimate Q^{π} . You obtain a series of samples $(s_1,a_1,r_1), (s_2,a_2,r_2), ..., (s_T,a_T,r_T)$ from acting according to this policy (where $a_t = \pi(s_t)$, for all t).

1.7.7

Recall the update equation for the Temporal Difference algorithm, performed on each sample in sequence:

$$V(s_t) \leftarrow (1 - \alpha)V(s_t) + \alpha(r_t + \gamma V(s_{t+1}))$$

which approximates the expected discounted reward $V^{\pi}(s)$ for following policy π from each state s, for a learning rate α .

Fill in the blank below to create a similar update equation which will approximate Q^{π} using the samples. You can use any of the terms Q, s_t , s_{t+1} , a_t , $a_{t+1},\,r_t,\,r_{t+1},\Upsilon$, $\alpha,\,\pi$ in your equation, as well as Σ and max with any index variables (i.e. you could write max_a , or Σ_a and then use a somewhere else), but no other terms.

Explain your answer in less than 2 lines:

7.7.7

Now, we will approximate Q^{π} using a linear function: $Q(s,a) = \sum_{i=1}^{d} w_i f_i(s,a)$ for weights $w_1,...,w_d$ and feature functions $f_1(s,a),...,f_d(s,a)$.

To decouple this part from the previous part, use Q_{samp} for the value in the blank in part (2.2.1) (i.e. $Q(s_t, a_t) \leftarrow (1-\alpha) Q(s_t, a_t) + \alpha Q_{samp}$).

Which of the following is the correct sample-based update for each w_i ?

1)
$$w_i \leftarrow w_i + \alpha[Q(s_t, a_t) - Q_{samp}]$$

2)
$$w_i \leftarrow w_i - \alpha[Q(s_t, a_t) - Q_{samp}]$$

3)
$$w_i \leftarrow w_i + \alpha [Q(s_t, a_t) - Q_{samp}] f_i(s_t, a_t)$$

4)
$$w_i \leftarrow w_i - \alpha [Q(s_t, a_t) - Q_{samp}] f_i(s_t, a_t)$$

$$5)w_i \leftarrow w_i + \alpha[Q(s_t, a_t) - Q_{samp}]w_i$$

$$6)w_i \leftarrow w_i - \alpha[Q(s_t, a_t) - Q_{samp}]w_i$$

Explain your answer in less than 2 lines:

٣.٢.٢

The algorithms in the previous parts (part 2.2.1 and 2.2.2) are:

 $1) model-based \\ 2) model-free$

Explain your answer in less than 2 lines: