

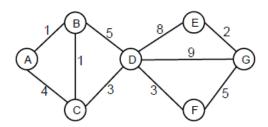
دانشکده مهندسی کامپیوتر هوش مصنوعی و سیستمهای خبره

تمرین تشریحی دوم ۱

ادر طراحی این تمرین از منابع کورس CS188 دانشگاه برکلی استفاده شده است.

Search \

Consider the state space graph shown below. A is the start state and G is the goal state. The costs for each edge are shown on the graph. Each edge can be traversed in both directions. Note that the heuristic h_1 is consistent but the heuristic h_2 is not consistent.



Node	h_1	h_2
A	9.5	10
В	9	12
C	8	10
D	7	8
E	1.5	1
F	4	4.5
G	0	0

(15 points) Possible paths returned 1.1

For each of the following graph search strategies (do not answer for tree search), mark which, if any, of the listed paths it could return. Note that for some search strategies the specific path returned might depend on tie-breaking behavior. In any such cases, make sure to mark all paths that could be returned under some tie-breaking scheme.

Search Algorithm	A-B-D-G	A-C-D-G	A-B-C-D-F-G
Depth first search			
Breadth first search			
Uniform cost search			
A^* search with heuristic h_1			
A^* search with heuristic h_2			

(25 points) Heuristic function properties 7.1

Suppose you are completing the new heuristic function h_3 shown below. All the values are fixed except $h_3(B)$.

Node	A	В	C	D	E	F	G
h_3	10	?	9	7	1.5	4.5	0

For each of the following conditions, write the set of values that are possible for $h_3(B)$. For example, to denote all non-negative numbers, write $[0, \infty]$, to denote the empty set, write \emptyset , and so on.

- 1.2.1 What values of $h_3(B)$ make h_3 admissible? (5 points)
- 1.2.2 What values of $h_3(B)$ make h_3 consistent? (5 points)

1.2.3 What values of $h_3(B)$ will cause A^* graph search to expand node A, then node C, then node B, then node D in order? (15 points)

n-pacmen search ۲

Consider the problem of controlling n pacmen simultaneously. Several pacmen can be in the same square at the same time, and at each time step, each pacman moves by at most one unit vertically or horizontally (in other words, a pacman can stop, and also several pacmen can move simultaneously). The goal of the game is to have all the pacmen be at the same square in the minimum number of time steps. In this question, use the following notation: let M denote the number of squares in the maze that are not walls (i.e. the number of squares where pacmen can go); n the number of pacmen; and $p_i = (x_i, y_i) : i = 1 \dots n$, the position of pacman i. Assume that the maze is connected.

- 2.1 What is the state space of this problem? Justify your answer. (5 points)
- 2.2What is the size of the state space (not a bound, the exact size)? Justify your answer. (5 points)
- 2.3 Give the tightest upper bound on the branching factor of this problem. Justify your answer. (5 points)

2.4 Bound the number of nodes expanded by uniform cost tree search on this problem, as a function of n and M. Justify your answer. (15 points)

- 2.5 Which of the following heuristics are admissible? Which one(s), if any, are consistent? Briefly justify all your answers. (30 points)
- 2.5.1 The number of (ordered) pairs (i, j) of pacmen with different coordinates:

$$h_1(p_1, \dots, p_n) = \sum_{i=1}^n \sum_{j=i+1}^n 1[p_i \neq p_j] \quad \text{where} \quad 1[p_i \neq p_j] = \begin{cases} 1 & \text{if } p_i \neq p_j \\ 0 & \text{otherwise} \end{cases}$$

2.5.2

$$h_2((x_1, y_1), \dots, (x_n, y_n)) = \frac{1}{2} \max \{ \max_{i,j} |x_i - x_j|, \max_{i,j} |y_i - y_j| \}$$